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Abstract
A tomographic quantum measure for a multimode system is introduced.
Symplectic tomograms describing quantum states of the system with many
degrees of freedom are shown to be equal to partial derivatives of the von
Neumann probability distribution functions of homodyne random variables.
The central limit theorem known in quantum probability theory is applied
to describe properties of the symplectic quantum measures introduced. An
example of the centre-of-mass homodyne quadrature is studied in the context
of the central limit theorem.

PACS numbers: 03.65.Wj, 03.65.Ta

1. Introduction

Probabilistic aspects of quantum tomograms by means of the von Neumann approach [1] were
considered in [2–4], where a connection of quantum tomograms with quantum probability
measures was shown. In quantum mechanics, one describes the quantum states either by
a vector |ψ > in a Hilbert space (for pure states) or by a density operator ρ̂ (for mixed
states). There exist several different equivalent representations of quantum states and quantum
observables ([5]). Quantum tomographic probability distributions (called tomograms of the
quantum states) contain the same information on the states as the density operators. Given
the state tomogram, one can calculate all the physical characteristics of the system (e.g., of a
chain of trapped ions considered as elements of a possible quantum computing device [6]). It
means that the standard positive probability distribution can be used as an alternative to the
wavefunction or density matrix for describing the quantum state. Note that in [9–11] the
tomographic probability distributions were found to be related to Wigner functions [12].
The tomographic probability distribution of [9, 10] was used in optical tomography scheme
[13, 14] to reconstruct the Wigner function of photon states by measuring the homodyne
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quadrature distributions and applying the Radon transform [15] to find the Wigner function.
In [11], an extension of optical tomography to symplectic tomography [16] was suggested. In
the framework of the symplectic tomography scheme, the Wigner function and density operator
can be reconstructed using a Fourier-like integral (connected with the Radon integral) of the
symplectic tomogram. Recently centre-of-mass tomography was introduced ([17]). Here
we investigate its properties in the context of the central limit theorem. Some brief remarks
on potential advantages of the tomographic probability representation in using fundamental
results of probability theory (central limit theorem) to study quantum states were mentioned
in [7, 8]. The aim of this work is to obtain in explicit form the manifestation of the central
limit theorem in the tomographic probability representation.

This paper is organized as follows. In section 2, we point out which probability
distributions can be associated with quantum observables. In section 3, the tomographic
approach for a multimode system is described. It is shown that the centre-of-mass tomogram
has a Gaussian distribution under certain conditions. In section 4, we show how the central
limit theorem works for the Fock states.

2. Probability distributions associated with quantum observables

Denote by L(H) and σ(H) the set of all Hermitian operators (quantum observables) and
the set of states (positive unit-trace operators) in a separable Hilbert space H, respectively.
Given x̂ ∈ L(H), there exists an orthogonal projection-valued measure dM̂(X) on the real
line R such that x̂ = ∫

R
XdM̂(X). The measure dM̂(X) satisfies the property M̂(�1) and

M̂(�2) are pairwise orthogonal projections for any two disjoint Borel subsets �1,�2 ⊂ R.
If x̂1, . . . , x̂n ∈ L(H) are pairwise commuting observables, then their spectral measures
dM̂1, . . . , dM̂n are commuting. Given a state ρ̂ ∈ σ(H) one can define the joint probability
distribution associated with commuting observables x̂1, . . . , x̂n as follows (see [1, 18]):

P(x̂1 ∈ �1, . . . , x̂n ∈ �n) = Tr(ρ̂M̂1(�1) . . . M̂n(�n)), (1)

where �k are Borel subsets of R. If n = 1, we shall call (1) by a probability distribution of
the observable x̂1 ≡ x̂ (in the state ρ). Then, the expectation and variance of x̂ are given by
the formulae

E(x̂) = Tr(ρ̂x̂),

Var(x̂) = Tr(ρ̂x̂2) − (Tr(ρ̂x̂))2.

Let us involve the distribution function of (1) as

Mx̂1,...,x̂n

ρ̂ (X1, . . . , Xn) ≡ Mρ̂ (X1, . . . , Xn)

= P(x̂1 ∈ (−∞, X1], . . . , x̂n ∈ (−∞, Xn]).

Commuting observables x̂1, . . . , x̂N are said to be (boson) independent if their joint probability
distributions (1) satisfy the classical independent property,

P(x̂i1 ∈ �1, . . . , x̂in ∈ �n) = P(x̂i1 ∈ �1) . . . P
(
x̂in ∈ �n

)
,

for any 1 � i1, . . . , in � N, is �= il, s �= l, and any Borel subsets �k ⊂ R. For commuting
independent observables x̂1, . . . , x̂N , . . . with the finite third moments mk = Tr(|x̂k −E(x̂k)|3)
satisfying the property

lim
N→+∞

∑N
k=1 mk(∑N

k=1 Var(x̂k)
)3/2 = 0,
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the central limit theorem holds (see [18]), that is the probability distribution of the sums
ŝN = x̂1 + · · · + x̂N goes to Gaussian one with the expectation E(ŝN ) = ∑N

k=1 E(x̂k) and the
variance Var(ŝN ) = ∑N

k=1 Var(x̂k) as N → +∞.

3. Quantum tomograms for multimode system

Consider a multimode system characterized by the position and momentum operators
q̂1, p̂1, . . . , q̂n, p̂n. We suppose that q̂j , p̂j are commuting for different indices j . Denote
X = (X1, . . . , Xn), µ = (µ1, . . . , µn), ν = (ν1, . . . , νn) arbitrary collections of real numbers.
The quantum tomogram determining a state ρ̂ of the multimode system is defined by the
formula

ω(X,µ, ν) = Tr(ρ̂δ(X1 − µ1q̂1 − ν1p̂1) . . . δ(Xn − µnq̂n − νnp̂n)),

where δ is the operator-valued Dirac δ-functions. Put x̂1 = µ1q̂1 + ν1p̂1, . . . , x̂n =
µnq̂n + νnp̂n. Then, x̂1, . . . , x̂n are commuting observables and

ω(X,µ, ν) = ∂n

∂X1 · · · ∂Xn

Mx̂1,...,x̂n

ρ̂ (X1, . . . , Xn). (2)

It is possible to reconstruct the state ρ̂ from the tomogram (2) as follows:

ρ̂ = 1

(2π)n

∫
ω(X,µ, ν) ei(X−µq̂−νp̂) dX dµ dν

= 1

(2π)n

∫
ei(X−µq̂−νp̂) dMx̂1,...,x̂n

ρ̂ (X) dµ dν.

The alternative approach to the description of quantum states in a multimode system is a
centre-of-mass tomogram defined as

ωcm(X,µ, ν) = Tr(ρ̂δ(X − µq̂ − νp̂)), (3)

where ab denotes a scalar product of vectors a and b. The state ρ̂ can be reconstructed from
the tomogram ωcm as follows:

ρ̂ =
∫

ωcm(X,µ, ν) ei(X−µq̂−νp̂) dX dµ dν

(2π)n
.

There is a connection of the Wigner function [12] with the tomogram ωcm (see [17]). The
position of the centre-of-mass for n particles measured in a scaled and rotated reference frame
of the phase space is given by the observable

x̂cm =
n∑

i=1

Mi(µiq̂i + νip̂i)

M
, (4)

where Mi and M = ∑n
i=1 Mi are the mass of the ith particle and the total mass,

respectively. It follows that ωcm is a tomogram of the centre-of-mass. Suppose that there
exist N + 1 numbers js, 1 = j0 < j1 < j2 < · · · < jN = n, such that the observables
x̂k = ∑jk−1

s=jk−1
(µsq̂s + νsp̂s), 1 � k � N, are independent and satisfy the condition of the

central limit theorem. Note that
∑N

k=1 x̂k = µq̂ +νp̂ ≡ ŝN . The centre-of-mass tomogram (3)

is a density of probability distribution associated with the observable ŝN . Hence, the central
limit theorem results in the Gaussian distribution of ωcm under the conditions we impose.
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4. The centre-of-mass tomography for the Fock states

For any vector n whose components are positive integer numbers nk, 1 � k � N, the
wavefunction

ψn(X) =
N∏

k=1

e− X2
k

2

π1/4
√

2nknk!
Hnk

(Xk)

determines the multimode Fock state. Here Hnk
are Hermite polynomials. The symplectic

tomogram ω of the Fock state is given by the formula

ω(X,µ, ν) =
N∏

k=1

e
− X2

k

µ2
k

+ν2
k

2nknk!
√

π
(
µ2

k + ν2
k

)H 2
nk


 X2

k√
µ2

k + ν2
k


 .

We will consider below another kind of tomography which is the centre-of-mass tomography
of quantum states. In [17], the formal expression was found for the centre-of-mass tomogram
of the Fock state which has the form

ωcm(X,µ, ν) =
∫

δ

(
X −

N∑
k=1

Xk

)
N∏

k=1

e
− X2

k

µ2
k

+ν2
k

2nknk!
√

π
(
µ2

k + ν2
k

)H 2
nk


 X2

k√
µ2

k + ν2
k


 dX.

The expectations and variances of the variables x̂k = µkq̂k + νkp̂k in the Fock state are

E(x̂k) = 0,

Var(x̂k) = (
1
2 + nk

) (
µ2

k + ν2
k

)
,

1 � k � N . Suppose that N → +∞ and the components of n are uniformly bounded such
that nk � n. Then the absolute third moments of x̂k are uniformly bounded by means of

mk = Tr(|x̂k|3) = 2
∫ +∞

0
X3 e

− X2

µ2
k

+ν2
k

2nknk!
√

π
(
µ2

k + ν2
k

)H 2
nk


 X√

µ2
k + ν2

k


 dX � C

(
µ2

k + ν2
k

)3/2
,

where the constant C does not depend on µk, νk and k. Testing the known condition of
applicability of the central limit theorem gives us∑N

k=1 mk(∑N
k=1 Var(x̂k)2

)3/2 �
C

∑N
k=1

(
µ2

k + ν2
k

)3/2(∑ (
1
2 + nk

)(
µ2

k + ν2
k

))3/2 ≡ SN.

Suppose that 0 < r < µ2
k + ν2

k < R < +∞, then SN → 0 as N → +∞. The application
of the central limit theorem implies that the centre-of-mass tomogram ωcm of the Fock state
tends to a density of Gaussian distribution with the expectation and variance equal to zero and∑N

k=1

(
1
2 + nk

) (
µ2

k + ν2
k

)
, respectively.

5. Conclusion

We studied the probability characteristics associated with a multimode quantum system. It
is shown that the centre-of-mass tomogram of the Fock state is asymptotically Gaussian if
the number of modes N tends to infinity. This result proves the intuitively obvious statement
that for a many-body system (macroscopic one), the centre-of-mass is coordinate is practically
described by a Gaussian density matrix independently on the characteristics of density matrices
of the microscopic subsystems of the combined system.
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